Scalable Permutation-Equivariant Visual Geometry Learning

Yifan Wang1* Jianjun Zhou1,2,3* Haoyi Zhu1 Wenzheng Chang1 Yang Zhou1 Zizun Li1 Junyi Chen1 Jiangmiao Pang1 Chunhua Shen2 Tong He1,3†
1Shanghai AI Lab 2ZJU 3SII
*Equal Contribution | †Corresponding Author

Key Capabilities

Our novel, permutation-equivariant neural network reconstructs visual geometry without a fixed reference view, achieving robust, state-of-the-art performance.

Permutation-Equivariant

SOTA Performance

Robust & Efficient

Model Pipeline

Interative Demo

We visualize some in-the-wild videos, demonstrating the generalizability of our method.

💡 Please Note: To ensure a smooth interactive experience, the point clouds in this demo are downsampled. The quality of the full model is much higher.

Rotate

Hold & Drag Left Mouse

Pan

Hold & Drag Right Mouse

Zoom

Use Mouse Scroll Wheel